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Gradient expansion of the distribution function in the 
two-dimensional SOS model? 

J Dudowicz and J Stecki 
Institute of Physical Chemistry of Polish Academy of Sciences, Warsaw, Kasprzaka 44/52, 
01-224 Warszawa, Poland 

Received 15 March 1985 

Abstract. The distribution function (uu) in the inhomogeneous interface zone modelled 
by a two-dimensional SOS (solid-on-solid) system is successfully represented as polynomials 
in local density and the lattice analogues of its gradients and higher derivatives. 

1. Introduction 

The structure of the inhomogeneous interface between two coexisting phases is 
described in terms of the density profile and the two-point density-density distribution 
function. Simple lattice models for which the exact numerical computations can be 
carried out, are very useful even in two dimensions (Weeks 1977, van Leeuwen 
andHilhorst 1981, Stecki 1984, Dudowicz 1984, Stecki and Dudowicz 1984a, b, 1985a, b, 
Abraham 1984$). These computations show that the distribution function in the 
two-dimensional system strongly depends on the external potential which also deter- 
mines the shape of the density profile. But the density functional theory tells us that 
nevertheless it should be possible to eliminate the external field in favour of the density 
function, i.e. density profile p ( z ) .  

In the present paper, it is shown how the SOS distribution function (vu) in the 
transverse direction depends on p, and its finite differences Ap and AAp. The SOS model 
is recalled in § 2 together with the expressions for the density profile and pair distribu- 
tion function needed in the context of the transfer matrix used for all computations. 
The geometry and the external field of the simulated system are established in 0 3 .  In 
0 4 the representation of the transverse distribution function ( a m )  for Ax = 1, as 
polynomial in local density and its gradients is examined. A summary and discussion 
are given in 0 5. 

2. SOS model 

The solid-on-solid ( S O S )  model is a low-temperature approximation to the interface 
which considers arrays of columns of occupied sites (Weeks 1977). Thus ‘overhanging’ 
configurations are eliminated and neither clusters of particles in the ‘gas’ (pG = 0) nor 

t Supported by the Research Program 03.10.1.2.1 of the Polish Academy of Sciences. 
$’ See also the references therein. 
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holes in the 'liquid' phase ( p L =  1) are present. This picture is accurate for interfaces 
at low temperatures. The partition function is 

where hi denotes the height of column i and {hi} = {hly  h2, . . .}. Here E is the interaction 
energy of two neighbouring columns 

E = 2 J  c [hi - hi+ll J > O  (2.2) 
1 

and the energy zero corresponds to a perfectly flat interface. VPt is an external 
potential. The role of the external potential is to localise the interface and to limit its 
width which is divergent for Vf"' = 0. It is known that infinitesimal external potential 
is sufficient to pin the interface even in two dimensions (van Leeuwen and Hilhorst 
1981). Equations (2.1) and (2.2) show that instead of occupation numbers Y ( X ,  z )  = 0 , l  
of the lattice gas, the column heights h ( x ) ,  O < ~ ( X ) < C O  are used as microscopic 
variables (Chui and Weeks 1981, Jasnow et a1 1982). 

For the numerical computation of the distribution function we use the column- 
column transfer matrix. It is defined as 

T,, = T,, =exp[-pVe"'(m)/2-~Vext(n) /2-2PJJm - n l ]  (2.3) 

where m = h + 1, n = h'+ 1 label the states of a single column, OS h S M, M is taken 
large but fixed. The (M + 1) x (M + 1) symmetrical transfer matrix (2.3) has been 
diagonalised numerically with the aid of EISPACK routines producing eigenvalues A i  
and eigenvectors dr) .  Then by using the eigenvalue expansion 

T,, = C x("( m)Apt'"( n) (2.4) 
r=-i 

one can express various quantities (such as density profile, two-point distribution 
function) in terms of A I  and dr ) .  We use periodic boundary conditions in direction 
x throughout. The density profile is 

Here, x ( l )  belongs to the largest eigenvalue, A l .  For the two-particle distribution 
function, we obtain 

where r i =  A I / A ,  < 1, Ax = Jx2  - xlJ. In working equations the term I = 1 was separated 
out. These relations are valid in the limit L + 00 ( L  is the size in direction x in which 
the system is translationally invariant with periodic boundary conditions). One also 
defines the distribution function g through 

P Z ( Z 1 ,  z2; A x )  = A Z , ,  z2; AX)P(ZI)P(Z2). (2.7) 

3. Description of the system 

The system studied is a SOS M X CO strip of quadratic lattice, 1 S z S M, 1 S x < CO, with 
periodic boundary conditions in the x direction. The external field V;x'(h) needed to 



Gradient expansion in the 20 SOS model 3207 

stabilise the interface may be taken as 
h 

V?'(h) = U e x t ( X ,  z) 
r = ,  

and 
z < zo U,> 0 

U e x t ( X ,  z) = z = zo 

(3.1) 

z > zo. 

ueXt is zero for the central layer and favours a particle for z < zo and a hole for z >  zo; 
it does not depend on the coordinate x. Hence, if ho = zo (or ho = zo-+) and separating 
a constant V,, 

Vyt( h )  = V, - h - hol. (3.3) 

This is a particular case a = 1 of Vex'= glh - hOlu; a = 2  would correspond to the 
gravitational potential (van Leeuwen and Hilhorst 1981). 

The system exhibits the particle-hole symmetry which leads to an antisymmetric 
density profile and symmetric (spin-spin) distribution function 

p (  zo + n )  + p(  zo - n )  = 1 ~ ( z o )  ~ 0 . 5 ,  (3.4) 

( a ( z o  + n, ,  x ) a (  zo + n2, x * A x ) )  = ((z( zo - n, ,  x ) a (  zo - n2, x * A x ) ) ,  (3.5) 

where zo = zmid = 4M ( M  even) or $( M + 1) ( M  odd), n,  and n2 are integer numbers. 
The relation between (aa) and p2 (see (2.6)) is the following: 

(U(+) = 4P2(zl, 2 2 ;  A x )  - 2p(z,) - 2p(z,) + 1. (3.6) 

The distribution functions p2(z,, 2,; Ax) or g(z,, z2; A x )  do not exhibit any symmetry 
about the middle of the system and only show the general symmetry p2( 1,2) = p2(2, l ) ,  
g ( l ,2 )=g(2 ,  1) O ~ ~ ~ ( ~ I , Z ~ ; A X ) = P ~ ( Z ~ , Z ~ ; A X ) ,  g(Z, ,z2;Ax)=g(zz,zl;Ax).  

4. The gradient expansion 

The density functional theory starts from the observation that all average equilibrium 
quantities such as density, local susceptibility, two-point distribution function, etc are 
functionals of the external field (-pu"'(r)) .  As explained in Evans (1979) one may 
use the relation between p ( r )  and -puex' (r )  to eliminate -pu'"'(r). Then all other 
quantities become functionals of p ( r )  (in our case they depend on values of p ( r )  at 
all points of the lattice, r i ) .  One can try to introduce a local dependence on p and its 
spatial derivatives at any chosen point r. This results from the Taylor series expansion 
of p ( r + A r )  about p ( r ) .  Such gradient expansions for a fluid interface have been well 
known since the work of van der Waals (Rowlinson and Widom 1982, Davis and 
Scriven 1982, Kayser and Raveche 1983). In this approach, equilibrium quantities in 
the interface become functions of p ( z )  and its spatial derivatives p '=dp/dz,  p"=  
d2p/dz2, .  . . . We have discussed elsewhere (Stecki and Dudowicz 1985a) various 
interpolations of the two-point density-density distribution function across the interface 
and have come to the conclusion that the dependence on p' cannot be neglected. Here 
we extract this dependence from our numerical results obtained for the SOS model 
( d  = 2) in various external fields and for various strip widths. 
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In any lattice model the gradient p' does not exist and we introduce the finite 
difference 

A d z )  = W Z  - 1 )  - P ( Z  + 111 

AAp(z)  = p ( z  - 1) + p ( ~ +  1 )  - 2 p ( z ) .  

z integer (4.1) 

unambiguously associated with point z, and the second finite difference 

(4.2) 

Let us consider first the distribution function (aa) in the central layer z = zmid = :( M + 1) 
for which p ( z )  = 0.5 and AAp(z)  = 0. Any variation of (uu) must then be ascribed to 
the changes of Ap. Figure 1 shows the computed values of ( a m )  for Ax = 1-5 against 
lApl calculated from the known density profiles for strip widths M = 29, 21 and 11 
and for external field 0.0001 S p c u 0 s  0.14 (see (3.1) and ( 3 . 2 ) ) .  The plots are almost 
linear and extrapolate clearly to unity for Ap = 0, which is the value of (ua) in either 
SOS homogeneous phase. A striking feature is that points corresponding to different 
sizes of strips and different external fields all fall on a common line. Thus we have 
already obtained a striking confinnation of the ideas of the density functional theory 

1 0' h 

, '. 5 
'-, . 

0 0 2  OL 

lhpl 

Figure 1. The in-layer distribution function ( u u ) ~ ~  at z = z , , ~  = z, = z2 = &( M + l ) ,  Ax = 1-5 
for various SOS strips (11 M c 29) in various external fields (0.0001 e p c u o c  0.14) at 
T = 0 . 5  Tc, plotted against lApI=f lp(z+l ) -p(z- l ) / .  Circles correspond to M = 11 and 
21, crosses to M = 29. For a comparison, lattice gas model with M = 7 and 11 is also 
included (dots). 
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since p, Ap, and AAp as independent variables determine uniquely our dependent 
quantity (aa). Such a picture was found at T = 0.5 T, (figure 1) and also at T = 0.3 T, 
(figure 2). 

I 
0 0 1  0 2  03 0 4  0 5  

IApl 

Figure 2. Same as figure 1, T =0.3 T,. Crosses correspond to M = 29, circles to M = 11,21. 

If we consider all layers z, z1 = z2 = z, with various densities 0 < p(  z )  < 1, the in-layer 
distribution function (aa) for z = z1 = z2 should form a surface (aa) =f($, Ap, AAp, . . .). 
As a first approximation a surface (aa) =f(p,  Ap) may be considered. The relevant 
data are shown in figures 3 and 4 for Ax = 1 and M = 29. Points connected by broken 
lines correspond to the same value of the external field. For a given density Pmod = po 
(Pm,,d=p-0.5), ((T(T)~,=~ decreases with lApl and for a given Ap, ((+(+)Ax=l increases 
with IPmodI. It seems that the surface (aa)=f(lpmodlt IApl) is reasonably smooth and 
unique. This observation, in connection with the universal dependence on Ap of the 
central layer distribution function (vu) (see figures 1 and 2) confirms the existence of 
a representation of (aa), which we may take to be a polynomial if we are to believe 
the gradient theory (Davis and Scriven 1982). In our case it may be a polynomial of 
density Pmod and Ap, AAp, . . . . The validity and accuracy of different polynomial 
representations is unknown. We can only compare which polynomials give the best fit 
to the existing data. For this comparision we use the least-squares method; it is 
described below for our case. 

As a first step, polynomials in two variables Pmod and Ap, of the form 
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0 4  

- 
n 

B 
0 

- 0 2  

C 

0 1  0 2  0 3  0 4  0.5 

I A p l  

Figure 3. The in-iayer distribution function (uu) in transverse direction z = z, = z2,  Ax = 1 ,  
as afunctionoftwovariables lpm4(z)l=lp(z)-0.51 and IAp(z) l=t lp(z+l ) -p(z- l ) l ,  for 
M = 29 in various external fields (0.0001 s &U, s 0.14) at T = 0.5 T,. Broken curves connect 
points corresponding to the same value of p,u,. 

were applied to 115 data points representing at T=OS Tc. The coefficients 
ajk found for various degrees N of the polynomial (4.3) are collected in table 1 where 
the values of standard deviation sN are also given. The standard deviation sN is defined 
as 

where n is the number of points and m-the number of constants (coefficients ajk). 
The assumed form (4.3) requires an explanation. The terms ajpLod do not occur in 
(4.3) since it should also describe for Ap = 0 the two-phase homogeneous system in 
which (sa) = 1 for all proportions of two phases. In the mixed products aj@kodlAplk 
only those with j even are invariant (in the range -0.5 < pmod < 0.5) with respect to 
the change of sign pmod + - p m o d .  In (4.3) we include all 1 d k d N, because the symmetry 
argument which dictates a restriction to even powers of Ap (Davis and Scriven 1982, 
Rowlinson and Widom 1982) does not apply here. We found that the fit of 
becomes very poor if the polynomial is so restricted (see table 1). The necessity of 
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t - 
0 0 1  0 2  0 3  0 4  0 5  

I A p l  

Figure 4. Same as figure 3, T = 0.3 T,. 

Table 1. The coefficients a,, of polynomials of degree N ( N  = 4,5,6), in two variables 
pmod=p(z) -0 .5  and IAp(z)l = ~ l p ( z + l ) - p ( z - l ) l ,  found by least-squares method 
applied to 115 values of distribution function ( c c ) ~ ~ = ,  at T=0.5  T,. The standard 
deviations sh. are also given. For a comparison, standard deviations s$ corresponding to 
restricted polynomials (with even k only) are included. The indices j, k denote the powers 
of pmod and !PPI ,  respectively. 

a,, N = 3 N = 4  N = 5  N = 6  

aol -0.833 609 -0.713 067 -0.715 77 -0.808 710 
a,, 0.888 251 -0.370 850 0.371 231 3.302 76 
ao3 -0.948 099 2.728 99 -2.260 61 -32.359 2 
a04 -3.200 56 7.394 20 144.537 
a05 -7.022 84 -292.788 
a06 222.326 
a2,  1.12932 0.399 830 -1.452 23 -1.336 56 
a22 3.716 78 7.351 73 4.108 42 
‘ 2 3  -6.585 38 9.628 16 
a24 -0.000 6558 
‘41 8.089 38 9.188 99 
‘ 4 2  -11.3803 
sN 0.321 7 x 0.278 9 x IO-* 0.142 8 X lo-’ 0.141 4 X IO-’ 
3% 1.934 3 X 1.934 3 x 1.131 2X10-2 
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admitting the linear term (k = 1) in IApl is already apparent from figures 1 and 2 where 
it is clearly dominant. 

Comparing table 1 and table 2, one can see that already polynomials (4.3) of two 
variables (table 1) reproduce ( c T c T ) ~ ~ = ~  very well. The standard deviation s for N = 6 
is slightly smaller than for N = 5 but the coefficients vary too much to be trusted. The 
case with N = 5 seems to be the best. The simplest try with a polynomial of the third 
degree, N = 3, is already good with s about twice that for N = 5 or 6 .  

Table 2. The coefficients a,,, of polynomials in three variables: pmd(z), IAp(r)l  and 
A A p ( z ) = p ( r + l ) + p ( r - l ) - 2 p ( z ) ,  of degree N ( N = 2 , 3 , 4 ) ,  obtained by least-squares 
fitting of the distribution function ( O ( T ) ~ ~ = ~  at T =  0.5 T,. The standard deviations sN are 
also given. 

O,kI N = 2  N = 3  N = 4  

a010 

a020 

a040 

a002 

a004 

a210 

a220 

a101 

a202 

a012 

a022 

a111 
a121 

SN 

a030 

a103 

a301 

-0.741 303 -0.707 279 
0.272 391 0.061 744 

0.322 275 

0.096 128 0.575 791 

-0.297 880 

-0.322 237 -0.459 022 

-0.180 023 

1.594 63 

1.212 5 x 10-3 0.447 2 x 10-3 

-0.715 770 
0.130 007 
0.138 637 
0.164 310 

-8.599 49 
-6.320 46 
-0.265 899 
10.849 3 
0.353 052 

14.458 4 
47.491 5 
-3.194 00 

-26.134 3 
34.721 7 
11.379 0 

- 138.594 
0.173 2 x 

In the next step, the polynomial in three variables Pmod, A p  and A A p ,  of the following 
form 

N N 

k = l  I even 
( V V ) A x = l =  aOkOIAplk+ c a m I A b '  

k + l = N  ( j + I )  even 
j + k + l s N  

was tried for fitting the same set of data points ((aa) for A x  = 1 at T = 0.5 Tc). Table 
2 contains the coefficients a j k /  and the standard deviations found. Similarly as in (4.3) 
the terms a,Wpmod do not occur in (4.5) for the same reason. All other terms denoted 
generally pAodlAplk AAp'  withj, k, 1 = 0,1,2, . . . N ( j +  k + 1 s N )  are taken into account 
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provided that the sum ( j + l )  is even, ensuring the symmetry of (au) (see (3.5)). 
Introducing the second finite difference AAp improves the fitting. 

The third degree polynomial in Pmod, Ap, AAp describes (aa)Ax=l with average 
accuracy of about 0.05°/~. The same procedure (i.e. least-squares method) was used 
to fit the distribution function ( ( ~ c r ) ~ ~ = ~  at T = 0.3 T,. The standard deviations are of 
the same order as those for T = 0.5 T, and also inclusion of the second finite-difference 
terms leads to a much better accuracy. The attempt of a simultaneous fitting of all 
(aa)Ax=l corresponding to both temperatures T=0.5  T,, 0.3 T, failed; it means that 
besides the dependence on Pmod, Ap, AAp there is a strong dependence on temperature. 
Therefore the coefficients are strong functions of temperature. 

5. Discussion 

When examining the dependence on local gradients and local density, we decided to 
study the distribution function (aa) rather than the distribution function g (or p2),  
because (aa) exhibits the particle-hole symmetry of our system. Due to this property, 
it is sufficient to consider one half of the strip with the central layer included. 

First, for p = 0.5, we found a strong and almost linear dependence of (aa) on IApl, 
which extrapolated to Ap = 0 gives the correct value of ((+U). Different sizes of the 
system and different external fields produced a common curve for a given Ax. Hence 
we admitted the linear term in IApI in the polynomial repreFentation of ( U U ) ~ ~ = ~ ;  this 
is correct because the symmetry arguments which impose even powers of p‘  do not 
apply to Ap. Omitting odd powers of Ap in (4.3) and (4.5) leads to very poor fits of 

When we consider (aa) for all layers, the second finite difference AAp (which is 
zero for the central layer) should appear as an additional independent variable. And 
indeed, introducing AAp into the polynomial improves the accuracy of description of 
((+(T)~,=~ by about one order of magnitude (see tables 1 and 2). 

The dependence on the finite differences is non-analytical. For the given strip width 
M,  the derivative d(aa)/dlApl may be written as 

( d * x = 1 .  

In spite of the fact that a(aa) /a(puo)  and dlApl/d(Puo) tend to infinity for Puo+O (see 
figures 5 and 61, limpuo+o d(aa)/alApl is finite. If JApl= AplPuol” and ( m a )  = 1 -A,,IPuol” 

a(Uu)/alApl= Au/A, ,  (5.2) 

where A,, and A, are constants. For Ax = 1, z, = z2 = &id, we found v = 5. 
We employed in the polynomial representation the finite differences Ap and AAp 

as independent variables. There is also another possibility of choice of independent 
variables. It is known (Stecki and Dudowicz 1982b) that for a = 1 the product of the 
external field. Puo and the Fou-ier transform H ( z ,  zmid; k = 0) equals p ‘ ( z )  in the 
continuous system 

p ’ (Z)=  -2PUo&(Z, &id; k = 0 )  u g >  0. (5.3) 

Therefore instead of Ap, one can use the RHS of (5.3) as the independent variable. 
This attempt was carried out but the data points ( C T U ) ~ ~ = ]  for p = 0.5 corresponding 
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Figure 5. Typical behaviour of the SOS distribution function ( U U ) ~ ~  in transverse direction 
z = zmid = L, = z2 with external field puo variable. As puo + O+, d(uu) /a(pu0)  + -a. 

Figure 6. Typical plot of first finite difference IAp(z,,,)l against external field puo. As 
Puo+O+, aIb(z,,dIla(puo) +a. 

to different strip widths and different external fields do not fall on a common line, in 
contrast to previously found universal dependence on Ap (see figures 1 and 2). 

All our results given here are related to an external field (CY = 1)  determined by the 
step function. The case of the gravitational field (a = 2), damping density fluctuations 
in the interface zone more strongly, has not been examined yet. We suppose that the 
independent variables p, Ap, AAp will determine the structure of interface uniquely 
and accurately also for the case of the gravitational field (CY = 2). 
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